If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2-23s+22=0
a = 1; b = -23; c = +22;
Δ = b2-4ac
Δ = -232-4·1·22
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-21}{2*1}=\frac{2}{2} =1 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+21}{2*1}=\frac{44}{2} =22 $
| 2a-6=204 | | F(0)=4^n | | -2(p+3)=-2 | | 3x-8+4x=4x-7 | | 6.6g+6=2.6g+14 | | -6-(-36)=x/9 | | 12m-112=1,000 | | 7x+3=2x+x-3 | | 7.9-0.7x=1.6 | | F(3)=4^n | | 5(5x-1)-4=21x+7 | | 19a-12-4/8=-57 | | 4x-10=-2(x+3) | | 20°=46x-440x | | 3x(2x+3)=2x+9 | | 4x+8=9x+-8 | | 2x+20+3x+4x-20=180 | | F(-2)=-5n+7 | | x+3(x4)=5(x+2) | | 2(y+8)-9=-7 | | f(-1/2)=-2(-1/2)+3 | | h/6-`1=-3 | | 20-3x+6x-18=35 | | 162=13b-7 | | 4x-(5x-10)=10 | | 4x-(95x-10)=10 | | 18-10x+x^2=0 | | 3x+20+3x+4x-20=180 | | 4p=8p-(-24) | | 5(2-x)+6=2x-5 | | 36*a=360 | | 1+k/2=5 |